Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Subversion of Host Responses to Energy Insufficiency by Us3 Supports Herpes Simplex Virus 1 Replication during Stress.

Identifieur interne : 000737 ( Main/Exploration ); précédent : 000736; suivant : 000738

Subversion of Host Responses to Energy Insufficiency by Us3 Supports Herpes Simplex Virus 1 Replication during Stress.

Auteurs : Elizabeth I. Vink [États-Unis] ; James R. Smiley [Canada] ; Ian Mohr [États-Unis]

Source :

RBID : pubmed:28468873

Descripteurs français

English descriptors

Abstract

Cellular stress responses to energy insufficiency can impact virus reproduction. In particular, activation of the host AMP-activated protein kinase (AMPK) by low energy could limit protein synthesis by inhibiting mTORC1. Although many herpesviruses, including herpes simplex virus 1 (HSV-1), stimulate mTORC1, how HSV-1-infected cells respond to energy availability, a physiological indicator regulating mTORC1, has not been investigated. In addition, the impact of low-energy stress on productive HSV-1 growth and viral genetic determinants potentially enabling replication under physiological stress remains undefined. Here, we demonstrate that mTORC1 activity in HSV-1-infected cells is largely insensitive to stress induced by simulated energy insufficiency. Furthermore, resistance of mTORC1 activity to low-energy-induced stress, while not significantly influenced by the HSV-1 UL46-encoded phosphatidylinositol 3-kinase (PI3K)-Akt activator, was dependent upon the Ser/Thr kinase activity of Us3. A Us3-deficient virus was hypersensitive to low-energy-induced stress as infected cell protein synthesis and productive replication were reduced compared to levels in cells infected with a Us3-expressing virus. Although Us3 did not detectably prevent energy stress-induced AMPK activation, it enforced mTORC1 activation despite the presence of activated AMPK. In the absence of applied low-energy stress, AMPK activity in infected cells was restricted in a Us3-dependent manner. This establishes that the Us3 kinase not only activated mTORC1 but also enabled sustained mTORC1 signaling during simulated energy insufficiency that would otherwise restrict protein synthesis and virus replication. Moreover, it identifies the alphaherpesvirus-specific Us3 kinase as an mTORC1 activator that subverts the host cell energy-sensing program to support viral productive growth irrespective of physiological stress.IMPORTANCE Like all viruses, herpes simplex virus type 1 (HSV-1) reproduction relies upon numerous host energy-intensive processes, the most demanding of which is protein synthesis. In response to low energy, the cellular AMP-activated protein kinase (AMPK) triggers a physiological stress response that antagonizes mTORC1, a multisubunit host kinase that controls protein synthesis. This could restrict virus protein production and growth. Here, we establish that the HSV-1 Us3 protein kinase subverts the normal response to low-energy-induced stress. While Us3 does not prevent AMPK activation by low energy, it enforces mTORC1 activation and overrides a physiological response that couples energy availability and protein synthesis. These results help explain how reproduction of HSV-1, a ubiquitous, medically significant human pathogen causing a spectrum of diseases ranging from the benign to the life threatening, occurs during physiological stress. This is important because HSV-1 reproduction triggered by physiological stress is characteristic of reactivation of lifelong latent infections.

DOI: 10.1128/JVI.00295-17
PubMed: 28468873
PubMed Central: PMC5487550


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Subversion of Host Responses to Energy Insufficiency by Us3 Supports Herpes Simplex Virus 1 Replication during Stress.</title>
<author>
<name sortKey="Vink, Elizabeth I" sort="Vink, Elizabeth I" uniqKey="Vink E" first="Elizabeth I" last="Vink">Elizabeth I. Vink</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, New York University School of Medicine, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, New York University School of Medicine, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Smiley, James R" sort="Smiley, James R" uniqKey="Smiley J" first="James R" last="Smiley">James R. Smiley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mohr, Ian" sort="Mohr, Ian" uniqKey="Mohr I" first="Ian" last="Mohr">Ian Mohr</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, New York University School of Medicine, New York, New York, USA Ian.mohr@med.nyu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, New York University School of Medicine, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Laura and Issac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laura and Issac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28468873</idno>
<idno type="pmid">28468873</idno>
<idno type="doi">10.1128/JVI.00295-17</idno>
<idno type="pmc">PMC5487550</idno>
<idno type="wicri:Area/Main/Corpus">000820</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000820</idno>
<idno type="wicri:Area/Main/Curation">000820</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000820</idno>
<idno type="wicri:Area/Main/Exploration">000820</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Subversion of Host Responses to Energy Insufficiency by Us3 Supports Herpes Simplex Virus 1 Replication during Stress.</title>
<author>
<name sortKey="Vink, Elizabeth I" sort="Vink, Elizabeth I" uniqKey="Vink E" first="Elizabeth I" last="Vink">Elizabeth I. Vink</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, New York University School of Medicine, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, New York University School of Medicine, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Smiley, James R" sort="Smiley, James R" uniqKey="Smiley J" first="James R" last="Smiley">James R. Smiley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mohr, Ian" sort="Mohr, Ian" uniqKey="Mohr I" first="Ian" last="Mohr">Ian Mohr</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, New York University School of Medicine, New York, New York, USA Ian.mohr@med.nyu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, New York University School of Medicine, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Laura and Issac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laura and Issac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cells, Cultured (MeSH)</term>
<term>Herpesvirus 1, Human (physiology)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Viral Proteins (metabolism)</term>
<term>Virus Replication (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules cultivées (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Herpèsvirus humain de type 1 (physiologie)</term>
<term>Humains (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines virales (métabolisme)</term>
<term>Réplication virale (MeSH)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines virales</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Herpèsvirus humain de type 1</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Herpesvirus 1, Human</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cells, Cultured</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules cultivées</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Humains</term>
<term>Interactions hôte-pathogène</term>
<term>Réplication virale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellular stress responses to energy insufficiency can impact virus reproduction. In particular, activation of the host AMP-activated protein kinase (AMPK) by low energy could limit protein synthesis by inhibiting mTORC1. Although many herpesviruses, including herpes simplex virus 1 (HSV-1), stimulate mTORC1, how HSV-1-infected cells respond to energy availability, a physiological indicator regulating mTORC1, has not been investigated. In addition, the impact of low-energy stress on productive HSV-1 growth and viral genetic determinants potentially enabling replication under physiological stress remains undefined. Here, we demonstrate that mTORC1 activity in HSV-1-infected cells is largely insensitive to stress induced by simulated energy insufficiency. Furthermore, resistance of mTORC1 activity to low-energy-induced stress, while not significantly influenced by the HSV-1 UL46-encoded phosphatidylinositol 3-kinase (PI3K)-Akt activator, was dependent upon the Ser/Thr kinase activity of Us3. A Us3-deficient virus was hypersensitive to low-energy-induced stress as infected cell protein synthesis and productive replication were reduced compared to levels in cells infected with a Us3-expressing virus. Although Us3 did not detectably prevent energy stress-induced AMPK activation, it enforced mTORC1 activation despite the presence of activated AMPK. In the absence of applied low-energy stress, AMPK activity in infected cells was restricted in a Us3-dependent manner. This establishes that the Us3 kinase not only activated mTORC1 but also enabled sustained mTORC1 signaling during simulated energy insufficiency that would otherwise restrict protein synthesis and virus replication. Moreover, it identifies the alphaherpesvirus-specific Us3 kinase as an mTORC1 activator that subverts the host cell energy-sensing program to support viral productive growth irrespective of physiological stress.
<b>IMPORTANCE</b>
Like all viruses, herpes simplex virus type 1 (HSV-1) reproduction relies upon numerous host energy-intensive processes, the most demanding of which is protein synthesis. In response to low energy, the cellular AMP-activated protein kinase (AMPK) triggers a physiological stress response that antagonizes mTORC1, a multisubunit host kinase that controls protein synthesis. This could restrict virus protein production and growth. Here, we establish that the HSV-1 Us3 protein kinase subverts the normal response to low-energy-induced stress. While Us3 does not prevent AMPK activation by low energy, it enforces mTORC1 activation and overrides a physiological response that couples energy availability and protein synthesis. These results help explain how reproduction of HSV-1, a ubiquitous, medically significant human pathogen causing a spectrum of diseases ranging from the benign to the life threatening, occurs during physiological stress. This is important because HSV-1 reproduction triggered by physiological stress is characteristic of reactivation of lifelong latent infections.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28468873</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>91</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2017</Year>
<Month>07</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J Virol</ISOAbbreviation>
</Journal>
<ArticleTitle>Subversion of Host Responses to Energy Insufficiency by Us3 Supports Herpes Simplex Virus 1 Replication during Stress.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00295-17</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00295-17</ELocationID>
<Abstract>
<AbstractText>Cellular stress responses to energy insufficiency can impact virus reproduction. In particular, activation of the host AMP-activated protein kinase (AMPK) by low energy could limit protein synthesis by inhibiting mTORC1. Although many herpesviruses, including herpes simplex virus 1 (HSV-1), stimulate mTORC1, how HSV-1-infected cells respond to energy availability, a physiological indicator regulating mTORC1, has not been investigated. In addition, the impact of low-energy stress on productive HSV-1 growth and viral genetic determinants potentially enabling replication under physiological stress remains undefined. Here, we demonstrate that mTORC1 activity in HSV-1-infected cells is largely insensitive to stress induced by simulated energy insufficiency. Furthermore, resistance of mTORC1 activity to low-energy-induced stress, while not significantly influenced by the HSV-1 UL46-encoded phosphatidylinositol 3-kinase (PI3K)-Akt activator, was dependent upon the Ser/Thr kinase activity of Us3. A Us3-deficient virus was hypersensitive to low-energy-induced stress as infected cell protein synthesis and productive replication were reduced compared to levels in cells infected with a Us3-expressing virus. Although Us3 did not detectably prevent energy stress-induced AMPK activation, it enforced mTORC1 activation despite the presence of activated AMPK. In the absence of applied low-energy stress, AMPK activity in infected cells was restricted in a Us3-dependent manner. This establishes that the Us3 kinase not only activated mTORC1 but also enabled sustained mTORC1 signaling during simulated energy insufficiency that would otherwise restrict protein synthesis and virus replication. Moreover, it identifies the alphaherpesvirus-specific Us3 kinase as an mTORC1 activator that subverts the host cell energy-sensing program to support viral productive growth irrespective of physiological stress.
<b>IMPORTANCE</b>
Like all viruses, herpes simplex virus type 1 (HSV-1) reproduction relies upon numerous host energy-intensive processes, the most demanding of which is protein synthesis. In response to low energy, the cellular AMP-activated protein kinase (AMPK) triggers a physiological stress response that antagonizes mTORC1, a multisubunit host kinase that controls protein synthesis. This could restrict virus protein production and growth. Here, we establish that the HSV-1 Us3 protein kinase subverts the normal response to low-energy-induced stress. While Us3 does not prevent AMPK activation by low energy, it enforces mTORC1 activation and overrides a physiological response that couples energy availability and protein synthesis. These results help explain how reproduction of HSV-1, a ubiquitous, medically significant human pathogen causing a spectrum of diseases ranging from the benign to the life threatening, occurs during physiological stress. This is important because HSV-1 reproduction triggered by physiological stress is characteristic of reactivation of lifelong latent infections.</AbstractText>
<CopyrightInformation>Copyright © 2017 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vink</LastName>
<ForeName>Elizabeth I</ForeName>
<Initials>EI</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, New York University School of Medicine, New York, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smiley</LastName>
<ForeName>James R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mohr</LastName>
<ForeName>Ian</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, New York University School of Medicine, New York, New York, USA Ian.mohr@med.nyu.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laura and Issac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI073898</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM056927</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI007647</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>FRN 12172</GrantID>
<Agency>CIHR</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C095207">US3 protein, Human herpesvirus 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018259" MajorTopicYN="N">Herpesvirus 1, Human</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">AMPK</Keyword>
<Keyword MajorTopicYN="Y">HSV-1 replication</Keyword>
<Keyword MajorTopicYN="Y">energy stress</Keyword>
<Keyword MajorTopicYN="Y">mTORC1</Keyword>
<Keyword MajorTopicYN="Y">translational control</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28468873</ArticleId>
<ArticleId IdType="pii">JVI.00295-17</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00295-17</ArticleId>
<ArticleId IdType="pmc">PMC5487550</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Jul;88(13):7379-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24741093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2016;94:53-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26997590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 May;84(10):5260-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20181700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2008 Apr 17;3(4):253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18407068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2009 Aug;15(4):309-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19359670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2016 Mar;26(3):190-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26616193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Nov 28;26(23):4812-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17962806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Dec 1;18(23 ):2893-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(1):399-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2007 Mar 8;26(11):1616-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16953221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2011 Jul;21(4):205-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21538667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Virol. 2016 Sep 29;3(1):283-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27501262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2005 Jul;2(1):21-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16054096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Apr 25;30(2):214-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Nov 26;115(5):577-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2009 Sep;31(9):944-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19644919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jun 17;332(6036):1433-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21680840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8839-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12847291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 3;281(9):5335-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16340011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2001 Oct;108(8):1167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11602624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Nov;7(11):787-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19806153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Oct 10;353(1):33-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7926017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2012;52:381-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22017684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(7):3649-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17215282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 10;278(41):39422-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2012 Dec;20(12):604-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Jul 2;205:63-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26031763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Dec 1;24(23):2627-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21123650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Sep 15;25(18):1895-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21937710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2009 May;109 Suppl 1:17-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19393004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Mar 18;28(6):677-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19197243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Sep 2;269(35):22162-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7915280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2014;42(1):301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24858404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Mar;85(6):2803-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21228233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2015 May;479-480:562-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25771487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Mar 15;18(6):660-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Jan;8(1):e1002502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22291597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2013 Jun;15(6):555-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23728461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Mar 14;29(5):541-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18342602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2013 Oct;23(10):1237-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23999859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2012 Jul 15;26(14):1527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22802527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Jun 24;90(14 ):6515-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27147746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3071-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22315427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1995 Nov 15;312 ( Pt 1):163-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7492307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1987 Sep;61(9):2896-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3039176</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Vink, Elizabeth I" sort="Vink, Elizabeth I" uniqKey="Vink E" first="Elizabeth I" last="Vink">Elizabeth I. Vink</name>
</region>
<name sortKey="Mohr, Ian" sort="Mohr, Ian" uniqKey="Mohr I" first="Ian" last="Mohr">Ian Mohr</name>
<name sortKey="Mohr, Ian" sort="Mohr, Ian" uniqKey="Mohr I" first="Ian" last="Mohr">Ian Mohr</name>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Smiley, James R" sort="Smiley, James R" uniqKey="Smiley J" first="James R" last="Smiley">James R. Smiley</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000737 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000737 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28468873
   |texte=   Subversion of Host Responses to Energy Insufficiency by Us3 Supports Herpes Simplex Virus 1 Replication during Stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28468873" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020